a) \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)
\(\Rightarrow2S-S=1-\frac{1}{2^{2014}}\)
b) Ta có : \(S=1-\frac{1}{2^{2013}}< 1\left(ĐPCM\right)\)
a) \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)
\(\Rightarrow2S-S=1-\frac{1}{2^{2014}}\)
b) Ta có : \(S=1-\frac{1}{2^{2013}}< 1\left(ĐPCM\right)\)
a) Cho tổng gồm 2014 số hạng
S= \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\)
CMR S<1
Tính tổng S
S=1+2+2^2+2^3+...+2^2014/1-2^2015
Cho tổng gồm 2014 số hạng: S= \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\).CMR: S<\(\frac{1}{2}\)
bai 1) tim x, y
x.y-x+2y=3
bai2 ) cmr
a)1/2-1/4+1/8-1/16+1/32-1/64<1/3
b) 1/3-2/3^2+3/3^3-4/3^4+....+99/3^99-100/3^100<3/16
c)1cho tổng gồm 2014 số hạng : s=1/4+2/4^2+3/4^3+.....2014/4^2014
Tính tổng: S= (- 1) + (- 1) ^ 2 + (- 1) ^ 3 +...+(-1)^ 2014 +(-1)^ 2015
tính các tổng sau
a, S1=1+(-2)+3+(-4)+..........+(-2014)+2015
b,S2=(-2)+4+(-6)+8+...............+(-2014)+2016
c,S3=1+(-3)+5+(-7)+................+2013+(-2015)
d,S4=(-2015)+(-2014)+(-2013)+......+2015+2016
làm đầy đủ chắc chắn cho mk nhé !
2. Tính tổng S trong mỗi trường hợp sau:
a) S = 1 - 2 + 3 - 4 + 5 - 6 + ... + 2013 - 2014
b) S = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 -10
tính tổng S=1-2+2^2-2^3+2^4-2^5+...+2^2014
Tính tổng:
a) C=\(2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2}}}}\)
b) S= \(1-2+2^2-2^3+...+2^{2014}\)