rút gọn
F=\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3+\sqrt{5}}}\)
Rút gọn A= \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn B=\(5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2\)
Rút gọn biểu thức
\(\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn biểu thức
A= \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn:
\(A=\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
Rút gọn
\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}\right)\times\sqrt{6}\)
2 \(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Rút gọn: A = \(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9-4\sqrt{5}}}-\sqrt[3]{a^2}+\sqrt[3]{a}}\)
rút gọn các căn thức sau
B=\(\frac{\sqrt{5-\sqrt{3}}-\sqrt{5+\sqrt{3}}}{\sqrt{5-\sqrt{22}}}+\sqrt{27+10\sqrt{2}}\)C= \(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)D=\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)A= \(\frac{1}{\sqrt{3+2\sqrt{2}}}+\frac{1}{\sqrt{5+2\sqrt{6}}}+\frac{1}{\sqrt{7+2\sqrt{12}}}+....+\frac{1}{\sqrt{199+2\sqrt{9900}}}\)