\(A=\frac{3^5\cdot1^7+3^9\cdot5}{3^7\cdot2^5}=\frac{3^5\left(1+405\right)}{3^7\cdot32}=\frac{406}{288}=\frac{203}{144}\)
A= \(\frac{3^5.1^7+3^9.5}{3^7.2^5}\)= \(\frac{3^5+3^5.3^4.5}{3^7.2^5}\)= \(\frac{3^5\left(1+81.5\right)}{3^7.2^5}\)= \(\frac{3^5\left(1+405\right)}{3^7.2^5}\)= \(\frac{406}{3^2.2^5}\)= \(\frac{406}{9.32}\)= \(\frac{203}{9.16}\)= \(\frac{203}{144}\).
Vậy A= \(\frac{203}{144}\).