Giúp mình với
II.nhân:\(\sqrt{A}\).\(\sqrt{B}\)=\(\sqrt{..............}\)(A≥0;B≥0)
a)\(\sqrt{2}\left(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\right)\)
b)\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
c)\(\sqrt{6+2\sqrt{5}-\sqrt{13+\sqrt{48}}}\)
Câu 1 : Rút gọn biểu thức
a, \(\frac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\frac{2}{3}\sqrt{12}.\)b, \(\frac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\frac{3}{3+3\sqrt{6}}.\)
c\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}.\)Với a>0;b>0
bài 1:
a) Rút gọn biểu thức : \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)
b) giải phương trình sau: \(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
c) tính A= \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^3\)
d) rút gọn biểu thức B= \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
Rút gọn:
A=\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
B=\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
Rút gọn
a) \(\sqrt{\frac{9-4\sqrt{5}}{2-\sqrt{5}}}\)
b) \(\sqrt{\frac{7-4\sqrt{3}}{\sqrt{3}-2}}\)
c) \(ab^2.\sqrt{\frac{3}{a^2b^4}}\)
d)\(\frac{1}{a-b}.\sqrt{a^6.\left(a-b\right)^2}\left(a< b< 0\right)\)
e) \(\frac{x+y+2\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}}\)
1) Rút gọn
a)A=\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
b)B=\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
c)P=\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
2) Rút gọn
\(\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
3) So sánh
a)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\) và 0
b)\(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2003}\)
RÚT GỌN BIỂU THỨC
A=\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(với a>_ 0, b>_ 0, a#b)
B=\(\left(\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right).\left(\frac{\sqrt{x}+\sqrt{y}}{x-y}\right)\)(với x>_ 0, y>_ 0, x#y)
C=\(x-4-\sqrt{16-8x^2+x^4}\)(với x>4)
D=\(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)(với a>0, b>0, a#b)
E=\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right).\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)(với a>0, a#1)
F=\(\frac{a-3\sqrt{a}}{\sqrt{a}-3}-\frac{a+4\sqrt{a}+3}{\sqrt{a}+3}\)( với a>_ 9)
G=\(\frac{9-x}{\sqrt{x}+3}-\frac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\)( với x>_ 9 )
Rút gọn biểu thức sau
a/ A=\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\frac{x-y}{\sqrt{x}-\sqrt{y}}\)Với x>0 ; y>0 ;x#y
b/ B=\(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
c/ C=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
d/ D=\(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
bài 1: cho biểu thức sau:P =\(\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)( a>=9, a khác 9)
a, rút gọn P
b, tìm a để P = \(\frac{1}{3}\)
c, tìm max P
bài 2: rút gọn
A=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
B=\(53+20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)