\(\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\)
\(=\left(x^2\right)^2-\left(xy+y^2\right)^2\)
\(=x^4-\left(x^2y^2+2xy^3+y^4\right)\)
\(=x^4-x^2y^2-2xy^3-y^4\)
P/s: k chắc lắm
\(\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\)
\(=\left(x^2\right)^2-\left(xy+y^2\right)^2\)
\(=x^4-\left(x^2y^2+2xy^3+y^4\right)\)
\(=x^4-x^2y^2-2xy^3-y^4\)
P/s: k chắc lắm
rut gon bieu thuc
a/ (x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
b/ (x-y)2+ (x+y)2
Rut gon bieu thuc sau:
\(\frac{x^3y-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
rut gon bieu thuc
B=x-x-y/1+xy:1+x*x-y/1+xy
rut gon A=xy^2-xz^2-y^3+yz^2/x^(z-y)+y^2(x-z)+z^2(y-x)
Rut gon phan thuc :
a2 + ac - b2 - bc/ a2 - b2
Tinh :
x-y/ xy+y2 - 3x+y/x2 - xy . y-x/x+y
may dau gach cheo la nhu kieu phan so nhe, dau cham la dau nhan. Cac ban giup minh voiiii !
giup to 2 bai nay
1 giá trị của biểu thức x3-y3 vơi x-y=2 và xy=48
2 rut gon bieu thuc (a+b)3-(a-b)3-6a2b+7-2b3 ta duoc
rut gon bieu thuc [(x^3+y^3)-2(x^2-y^2)+3(x+y)^2]:(x+y)
Thuc hien phep nhan rut gon roi tinh gia tri bieu thuc
B)x(x^2-y)-x^2(x+y)+y(x^2-x) tai x=1/2 va y=-100
rut gon bieu thuc
p=(x^2+2xy)^2+2(x^2+2xy)y^2+y^4