\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}\)
\(=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9.3^{10}}\)
\(=\frac{2\left(3^{10}-3^9\right)}{3^{10}}\)
\(=\frac{2.\left(59049-19683\right)}{59049}\)
\(=\frac{2.39366}{59049}\)
\(=\frac{78732}{59049}\)
mình ko biết vì mình mới học lớp 5 thôi
đáp số: mới lớp 5
\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9.3^{10}}\)
\(=\frac{2^{10}.3}{2^9.3^{10}}=\frac{2^9.2.3}{2^9.3^9.3}\)
\(=\frac{2}{3^9}\)
Cách 2 :
\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}\)
\(=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9.3^{10}}\)
\(=\frac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}\)
\(=\frac{2^{10}.3^9.2}{2^9.3^{10}}\)
\(=\frac{2.2}{3}\)
\(=\frac{4}{3}\)