Rut gon bieu thuc: S = \(\frac{1}{^{2^1}}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
rut gon bieu thuc sau
a . S=1+\(\frac{1}{3}+\frac{1}{^{^{3^2}}}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
Rut gon bieu thuc sau
A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
Rut gon \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
Rut gon:
A=\(\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+...+\frac{1}{3^{49}}\)
rut gon A= 1*4/2*3+2*5/2*4+3*6/4*5+...+98*101/99*100
Rut gon
A=2^100-2^99+2^98-2^97+...+2^2+2
B=3^50-3^49+3^48-3^47+...+3^2-3+1
rut gon : M = 1+7+7^2+7^3+7^4+...................................+7^100
Rut gon : A = 1 - 3 + 32 - 33 + 34 - 35 + ......+ 398 - 399 + 3100