\(\frac{\left(2.4.6.....2016\right).\left(2.4.6.....2016\right)}{\left(1.3.5.....2015\right).\left(3.5.7.....2017\right)}\) rút gọn bằng gì vậy?
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
rút gọn phân số
C= 20172016-20172015/20172015-20172014
1. \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
So sánh \(B\) với \(\frac{1}{4}\)
2. SO sánh \(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\) và \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
Rút gọn biểu thức \(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2018}}\)
Rút gọn:
\(\frac{2016-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{2017}}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2015}{2016}}\)
\(\frac{\left(2.4.6......2016\right).\left(2.4.6......2016\right)}{\left(1.3.5.....2015\right).\left(3.5.7.....2017\right)}\)
Rút gọn các tổng sau:
\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2015}\)
\(B=1+\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2016}\)
So sánh hai phân số : A=\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)và B=\(\frac{2015+2016+2017}{2016+2017+2018}\)