\(A=\frac{2.6.10+4.12.20+6.18.30+...+20.60.100}{1.2.3+2.4.6+3.6.9+...+10.20.30}\)
=> \(A=\frac{2^3.1.3.5+4^3.1.3.5+6^3.1.3.5+...+20^3.1.3.5}{1.2.3+2^3.1.2.3+3^3.1.2.3+...+10^3.1.2.3}\)
=> \(A=\frac{1.3.5\left(2^3+4^3+6^3+...+20^3\right)}{1.2.3\left(1+2^3+3^3+...+10^3\right)}=\frac{1.5.2^3.\left(1+2^3+3^3+...+10^3\right)}{1.2.\left(1+2^3+3^3+...+10^3\right)}\)
=> \(A=5.2^2=20\)
Đáp số: A=20
\(\frac{2\cdot6\cdot10+4\cdot12\cdot20+...+20\cdot60\cdot100}{1\cdot2\cdot3+2\cdot4\cdot6+...+10\cdot20\cdot30}=\frac{10\cdot2\left(1\cdot2\cdot3+2\cdot4\cdot6+...+10\cdot20\cdot30\right)}{1\cdot2\cdot3+2\cdot4\cdot6+...+10\cdot20\cdot30}\)
\(=20\)