Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ngoanhhong

Rút gọn \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)

Minh Triều
29 tháng 5 2015 lúc 17:09

ĐKXĐ: x2-y2\(\ne\)0                                                      4xy\(\ne\)0

     \(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)\ne0\)                            <=>x\(\ne\)0 và y \(\ne\)0

     \(\Leftrightarrow x\ne y\) và \(x\ne-y\)

Đặt P= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)

<=>\(\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right).\frac{y^2-x^2}{4xy}\)

<=>\(\left(\frac{x-y}{\left(x+y\right)^2\left(x-y\right)}-\frac{x+y}{\left(x+y\right)^2\left(x-y\right)}\right).\frac{-\left(x^2-y^2\right)}{4xy}\)

<=>\(\frac{x-y-x-y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}=\frac{-2y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}\)

<=>\(\frac{1}{2x\left(x+y\right)}=\frac{1}{2x^2+2xy}\)


Các câu hỏi tương tự
khánh
Xem chi tiết
trần thị mai
Xem chi tiết
Nguyễn Thị Bảo Trâm
Xem chi tiết
Sky
Xem chi tiết
Phan Tuấn Dũng
Xem chi tiết
Nguyễn Úy Vũ
Xem chi tiết
Trần Anh Đức
Xem chi tiết
Dũng Kẹo Dẻo
Xem chi tiết
Park Jimin
Xem chi tiết