\(\frac{a+b}{\sqrt{a}+\sqrt{b}}=\frac{a-b+2b}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}+\frac{2b}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{2b}{\sqrt{a}+\sqrt{b}}=\sqrt{a}-\sqrt{b}+\frac{2b}{\sqrt{a}+\sqrt{b}}\)