cmr
B=\(\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)< 2 \)Voi moi so nguyen duong n
cmr\(B=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
Rút gọn :\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}+\frac{1}{2n\left(2n+2\right)}\)
Tính nhanh
1,
A = \(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+..........+\frac{1}{97.99}-\frac{1}{98.100}\)
2,
B=
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+.........+\frac{1}{20}.\left(1+2+3+.........+20\right)\)
Cho \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}+\frac{1}{2n\left(2n+2\right)}\)
a, Chứng minh \(A< \frac{3}{2}\) b, Tìm n để \(A=\frac{175}{132}\)
Tìm n biết:
\(\frac{1}{2}\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)=\frac{2013}{2014}\)
Với \(n\in\)N*
Chứng minh rằng với mọi n \(\inℕ^∗\):
D = \(\frac{1}{1.2}\frac{1}{2.3}\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}< 1\)
F = \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
Giúp mik với
Tính nhanh:
a. A=\(\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\left(n\in N\right)\)
b. B=\(\left(10000-1^2\right)\left(10000-2^2\right)\left(10000-3^2\right)..\left(10000-1000^2\right)\)
c. C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d. D=\(1999^{\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-10^3\right)}\)
CMR với mọi số tự nhiên n>2 thì :
a)\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{2}\)
b)\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)<\(\frac{1}{4}\)
c)\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{\left(2n+1\right)^2}\right)\)<2