Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
sakủa

Rút gọn biểu thức

A=1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.........+\frac{1}{2^{2012}}\)

Kaori Miyazono
13 tháng 4 2017 lúc 11:58

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

Nên \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

Suy ra \(2A-A=2-\frac{1}{2^{2012}}\)hay \(A=2-\frac{1}{2^{2012}}\)

        Vậy \(A=2-\frac{1}{2^{2012}}\)

Aquarius Love
13 tháng 4 2017 lúc 12:01

\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

=>\(A-\frac{1}{2}A=\left(1+\frac{1}{2}+..+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)\)

=>\(\frac{1}{2}A=1-\frac{1}{2^{2013}}\)

=>\(A=2-\frac{1}{2^{2012}}\)

Cô mình chữa bài này rồi nên bạn cứ yên tâm


Các câu hỏi tương tự
Trần Cao Vỹ Lượng
Xem chi tiết
Takitori
Xem chi tiết
Nguyễn Thị Hương
Xem chi tiết
Kudo Sinichi
Xem chi tiết
Hồ Lê Hằng Nga
Xem chi tiết
Trần Linh Trang
Xem chi tiết
Lung Linh
Xem chi tiết
Đỗ Thanh Thảo
Xem chi tiết
ngan dai
Xem chi tiết