Rút gọn biểu thức sau:
A=\(\left(2x+y\right)^2-\left(y-2x\right)^2\)
B=\(\left(3x+2\right)^2+2\cdot\left(2+3x\right)\cdot\left(1-2y\right)+\left(2y-1\right)^2\)
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
\(P=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right)\cdot\left(\frac{\left(x^3-2x^2-2x-1\right)\cdot\left(x+1\right)}{x^9+x^7-3x^2-3}\right)+1-\frac{2\left(x+6\right)}{x^2+1}\right]\cdot\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
a, Tìm ĐKXD của P
b,Rút Gọn P
c,Chứng Minh Với các giá trị của x mà biểu thức P có nghĩa thì \(-5\le P\le0\)
Thu gọn biểu thức :
C = \(x^2\cdot\left(x^2-3x-1\right)-x\cdot\left(x^3-4x+2\right)+2x\cdot\left(\frac{3}{2}x^2-\frac{3}{2}x+1\right)\)
GIÚP VS MỌI NGƯỜI ƠI !
Thu gọn rồi tính giá trị biểu thức:
A = \(\left(2x-3\right)\cdot\left(3x^2+2x-1\right)-\left(4x+1\right)\cdot\left(x-1\right)\) ) tại x = \(\frac{1}{2}\)
Rút gọn biểu thức
\(3\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
Làm giúp mình nha
\(a,\left(x-2\right)\cdot\left(x+2\right)\cdot\left(x^2-10\right)=72\)
\(b,\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)\cdot\left(x+4\right)\cdot\left(x+5\right)=40\)
\(c,\left(2x-5\right)^2=\left(4x+7\right)^2\)
\(d,\left(2x^2+3x-1\right)^2-5\cdot\left(2x^2+3x+3\right)+24=0\)
rút gọn
\(\left(2x-1\right).\left(3x+1\right).\left(3x+4\right)\cdot\left(3-2x\right)\)
\(\frac{2}{3}x^2y\left(2x^2-\frac{y}{3}\right)-2x^2\left(2x^2-1\right)+\left(2x^2-1\right)\cdot\left(2x^2-\frac{y}{3}\right)\cdot\left(1-\frac{y}{3}\right)\)