Ta có: \(B=1+2^2+2^4+.....+2^{18}\)
\(\Rightarrow2B=2+2^3+2^5+...+2^{19}\)
\(\Rightarrow2B-B=\left(2+2^3+2^5+....+2^{19}\right)-\left(1+2^2+2^4+...+2^{18}\right)\)
\(\Rightarrow B=2^{19}-1\)
Vậy rút gọn biểu thức \(B=1+2^2+2^4+...+2^{18}\) được \(2^{19}-1\)
B =1+2^2+2^4+2^6+...+2^18
=2^0+2^2+2^4+2^6+...+2^18
4B=2^2+2^4+2^6+2^8+...+2^20
4B-B=(2^2+2^4+2^6+2^8+...+2^20)-(2^0+2^2+2^4+2^6+...+2^18)
3B=2^2+2^4+2^6+2^8+...+2^20-2^0-2^2-2^4-2^6-...-2^18
3B=2^20-2^0
3B=2^20-1
B=(2^20-1)/3