A= \(\sqrt{1-a}\)+\(\sqrt{a\left(a-1\right)}\)+a\(\sqrt{\frac{a-1}{a}}\)
ĐKXD: a=1 a<0
a=1 => A=0
a,=>A=\(\sqrt{1-a}\)+\(\sqrt{a\left(a-1\right)}\)+a\(\sqrt{\frac{a-1}{a}}\)
=\(\sqrt{1-a}\)+\(\sqrt{a\left(a-1\right)}\) - \(\sqrt{\frac{a^2-1}{a}}\)
=\(\sqrt{1-a}\)+\(\sqrt{\left(a-1\right)}\)-\(\sqrt{a\left(a-1\right)}\)
=\(\sqrt{1-a}\)
\(\sqrt{1-a}+\sqrt{a\left(a-1\right)}+\sqrt{\frac{a^2\left(a-1\right)}{a}}=\sqrt{1-a}+\sqrt{a\left(a-1\right)}+\sqrt{a\left(a-1\right)}=\sqrt{1-a}\left(2\sqrt{-a}+1\right)\)