Chứng minh rằng:
a)3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 4019/2009^2.2010^2 < 1
b) (1+ 1/3 ).(1+ 1/8).(1+ 1/15). ... .(1+ 1/n^2+ 2n) < 2
chứng tỏ rằng:
a)3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 4019/ 2009^2.2010^2 < 1
b) (1+ 1/3 ).(1+ 1/8).(1+ 1/15). ... .(1+ 1/n^2+ 2n) < 2
c/minh: A=3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+.......+4031/2015^2.2016^2<1
3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+31/15^2.16^2 <1
CMR : 3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 19/9^2.10^2 < 1
chứng minh rằng 3/1^2.2+5/2^2.3^2+7/3^2.4^2+...+2013/1006^2.1007^2<1
So sánh:
a) 430 và 3.2410
b) \(\dfrac{3}{1^2.2^2}\) + \(\dfrac{5}{2^2.3^2}\) + \(\dfrac{7}{3^2.4^2}\) +...+\(\dfrac{19}{9^2.10^2}\) và 1
3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 +...+ 19/9^2.10^2. chung minh nho hon 1