\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018=x^{2n}+x^n-2.x^n-2-x^{2n}+x^n+2018=2016.\)
\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018=x^{2n}+x^n-2.x^n-2-x^{2n}+x^n+2018=2016.\)
Rút gọn
N=\(a^n.\left(b+a\right)-b.\left(a^n-b^n\right)\)
M=\(3.x^n.\left(6.x^{n-3}+1\right)-2.x^n.\left(9x^{n-3}-1\right)\)
bài 2 tính biểu thức tại giá trị cho trước
Q=\(x^3-30.x^2-31.x+1\)
Rút gọn biểu thức sau : \(x^{n-3}y^3\left(x^{n+3}-x^3y^{n-3}\right)+x^3y^{n-3}\left(x^{n-3}y^3-y^{n+3}\right)\)
Rút gọn phân thức sau ( phân thức đều có nghĩa )
\(N=\dfrac{\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1}{x^2+7x+11}\)
\(\left(x^2_{ }+1\right)\left(x-3\right)-\left(x-3\right)\left(x^2-1\right)\)
rút gọn biểu thức
1) Tìm số tự nhiên n để đơn thức A chia hết cho đơn thức B
\(A=\)\(4x^{n+1}y^2;B=3x^3y^{n-1}\)
2) Rút gọn biểu thức
\(\left[\left(x^3+y^3\right)-2\left(x^2-y^2\right)+3\left(x+y\right)^2\right]:\left(x+y\right)\)
Rút gọn các phân thức sau:
a, A=\(\frac{x^3-7x-6}{x^2\left(x-3\right)^2+4x\left(x-3\right)^2+4\left(x-3\right)^2}\) b, B=\(\frac{n!-\left(n-1\right)!}{\left(n+1\right)!}\)
c, C=\(\frac{\left(n+1\right)!}{\left(n+1\right)!+\left(n+2\right)!}\) d, D=\(\frac{\left(n+2\right)!+\left(n+3\right)!}{\left(n+2\right)!-\left(n+3\right)!}\)
e, E=\(\frac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^5+1}\)
Ai biết câu nào thì trả lời câu đấy nha!!!
1. Tìm giá trị của x để các phân thức sau bằng 0
a. \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
b. \(\frac{x^4-5x^2+4}{x^4-10x^2+9}\)
2. Rút gọn các phân thức:
a. \(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\) b. \(\frac{\left(x-y\right)^3-3xy\left(x+y\right)+y^{^3}}{x-6y}\)
3. Rút gọn các phân thức với n là số tự nhiên
a. \(\frac{\left(n+1\right)!}{n!\left(n+2\right)}\) b. \(\frac{n!}{\left(n+1\right)!-n!}\) c. \(\frac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)
Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)