ở mẫu n4+n2+1=(n2+n+1)(n2-n+1)
\(\frac{2n}{n^4+n^2+1}=\frac{\left(n^2+n+1\right)-\left(n^2-2+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)
ở mẫu n4+n2+1=(n2+n+1)(n2-n+1)
\(\frac{2n}{n^4+n^2+1}=\frac{\left(n^2+n+1\right)-\left(n^2-2+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)
Rút gọn biểu thức : \(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+2}+\frac{3}{3^4+3^2+3}+...+\frac{2014}{2014^4+2014^2+2014}\)
Rút gọn biểu thức: \(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+...+\frac{2014}{2014^4+2014^2+1}\)
Rút gọn biểu thức: \(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+.....+\frac{2014}{2014^4+2014^2+1}\)
rút gọn biểu thức:\(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+...+\frac{2014}{2014^4+2014^2+1}\)được giá trị là bao nhiêu?
Rút gọn \(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+\frac{1}{\sqrt{4}-\sqrt{5}}-...-\frac{1}{\sqrt{2013}+\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)
\(y=\frac{1}{1^4+1^2+1}+\frac{1}{2^4+2^2+1}+\frac{1}{3^4+3^2+1}+............+\frac{2014}{2014^4+2014^2+1}\)
Rut gon bieu thuc
\(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+...+\frac{2014}{2014^4+2014^2+1}\)
1. Rút gọn biểu thức: \(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+...+\frac{2014}{2014^4+2014^2+1}\) được giá trị là.... (Nhập kết quả dưới dạng phân số tối giản).
2. Tập hợp các giá trị của m để phương trình : \(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn: giá trị tuyệt đối của (\(x_1-x_2\)) =17 là...
3. Cho \(\tan\alpha=\frac{1}{2}\). Gía trị của biểu thức: \(P=\frac{1+2.\sin\alpha.\cos\alpha}{1-2.\sin\alpha.\cos\alpha}\)
Rút gọn biểu thức sau:
\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+...+\frac{2014}{\sqrt{99}+\sqrt{100}}\)