Đặt \(3x-1=y,x+2=z\)
\(\Rightarrow y^2-2yz+z^2=\left(y-z\right)^2\)
\(=\left(3x-1-x-2\right)^2=\left(2x-3\right)^2\)
Đặt \(3x-1=y,x+2=z\)
\(\Rightarrow y^2-2yz+z^2=\left(y-z\right)^2\)
\(=\left(3x-1-x-2\right)^2=\left(2x-3\right)^2\)
Rút gọn biểu thức bằng cách nhanh nhất
\(5\left(3x-1\right)^2+4\left(5x+1\right)^2-12\left(5x-2\right)\left(5x+2\right)\)
Rút gọn biểu thức bằng cách nhanh nhất
\(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
Rút gọn các biểu thức sau:
a/\(\left(3x-1\right)^2-2\left(2-5x\right)^2-2\left(x^2+x-1\right)\left(x-1\right)\)
b/\(\left(3a-1\right)^2+2\left(9a^2-1\right)+\left(3a-1^{ }\right)^2\)
c/\(\left(3x-4^{ }\right)^2+\left(4-x\right)^2-2\left(3x-4\right)\left(x-4\right)\)
Rút gọn các biểu thức sau
a, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
Rút gọn biểu thức:
a/ \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
b/ \(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
rút gọn biểu thức \(\left(x-3\right)\left(x^2+3x+9\right)-\left(2x-1\right)^2\)
Rút gọn biểu thức sau:
A=\(\left(2x+y\right)^2-\left(y-2x\right)^2\)
B=\(\left(3x+2\right)^2+2\cdot\left(2+3x\right)\cdot\left(1-2y\right)+\left(2y-1\right)^2\)