\(B=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{5}+\sqrt{2}+1-\sqrt{7}\)
\(B=1\)
\(B=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{5}+\sqrt{2}+1-\sqrt{7}\)
\(B=1\)
Rút gọn biểu thức sau :
a)\(\frac{2}{\sqrt{7}-5}-\frac{2}{\sqrt{7}+5}\)
b)\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
c)\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\frac{1}{\sqrt{7}-\sqrt{5}}\)
d)\(\frac{3}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+3}-\frac{1}{\sqrt{5}+4}\)
giúp mình với ạ
Cho biểu thức A=\(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right):\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
Rút gọn A?
b, Tính A biết x=\(\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}+\sqrt{83-18\sqrt{2}}\)
Rút gọn biểu thức :
a) \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
b) \(B=\frac{2+\sqrt{6}+\sqrt{10}+\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{8}+\sqrt{12}+\sqrt{20}}.\frac{\sqrt{2}-1}{3}\)
Rút gọn các biểu thức sau:
1) \(\frac{1}{\sqrt{7-\sqrt{24}+1}}-\frac{1}{\sqrt{7+\sqrt{24}}}\)
2) \(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}\)
3) \(\sqrt{\frac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+\sqrt{6}}}\)
4) \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
Rút gọn biểu thức sau :
A = \(\frac{1}{4\sqrt{1}+1\sqrt{4}}+\frac{1}{7\sqrt{4}+4\sqrt{7}}+\frac{1}{10\sqrt{7}+7\sqrt{10}}...+\frac{1}{2007\sqrt{2004}+2004\sqrt{2007}}\)
1,Rút gọn:
a, \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+2}\)
b,\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
Rút gọn \(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
Rút gọn biểu thức:
\(Q=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)
rút gọn biểu thức
Q= \(\left(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+7}{x-2\sqrt{x}-3}\right):\frac{4-x}{\sqrt{x}+1}\)