a,
\(\left(x+y\right)^2+\left(x-y\right)^2\\ =x^2+2xy+y^2+x^2-2xy+y^2\\ =2\left(x^2+y^2\right)\)
b,
\(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\\ =2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\\ =2x^2-2y^2+2x^2+2y^2\\ =4x^2\)
c,
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\\ =\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\\ =\left(x-y+z+y-z\right)^2=x^2\)
\(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2-y^2\right)\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=x^2\)