\(A=\frac{2.\left(cosx+1\right)-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+2-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+1+cos^2x}{sinx.\left(cosx+1\right)}=\frac{\left(cosx+1\right)^2}{sinx.\left(cosx+1\right)}=\frac{cosx+1}{sinx}\)
\(A=\frac{2.\left(cosx+1\right)-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+2-sin^2x}{sinx.\left(cosx+1\right)}=\frac{2.cosx+1+cos^2x}{sinx.\left(cosx+1\right)}=\frac{\left(cosx+1\right)^2}{sinx.\left(cosx+1\right)}=\frac{cosx+1}{sinx}\)
rút gọn biểu thức sau:
B=\(\dfrac{1-4\sin^2x.\cos^2x}{\left(\sin x+\cos x\right)^2}+2\sin x.\cos x\) , với 0 độ<x<90 độ
rút gọn
\(C=\frac{\sqrt{2}\cos x-2\cos\left(\frac{\eta}{4}+x\right)}{-\sqrt{2}\sin x-2\sin\left(\frac{\eta}{4}+x\right)}\)
1. Cho A = \(x^2-3x\sqrt{y}+2y\)
a) Phân tích A thành phân tử
b) Tìm A khi \(x=\frac{1}{\sqrt{5}-2};y=\frac{1}{9+4\sqrt{5}}\)
2. Rút gọn
a) A = \(\frac{1+2\sin x.\cos x}{\sin x+\cos x}\)
b) B = \(\cot x+\frac{\sin x}{1+\cos x}\)
1)Rút gọn biểu thức sau:
\(1-\frac{\sin^2x}{1+\cot x}-\frac{\cos^2x}{1+\tan x}\)
2) Cho 2 số dương x;y thõa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức \(D=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)
Rút gọn biểu thức: \(\frac{2\cos^2a-1}{\sin a+\cos a}\)
GIÚP MÌNH VỚI M.N!!!!!
Rút gọn biểu thức sau:
\(\frac{2\cos^2\alpha-1}{\sin\alpha+\cos\alpha}\)
rút gọn biểu thức sau:
b, \(\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha-\sin^2\alpha\right)}{\cos\alpha.\sin\alpha}\)
c,\(C=\sin^6\alpha+\cos^6\alpha+3\sin^6\alpha.\cos^2\alpha\)
Rút gọn biểu thức
\(A=\frac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha.cos\alpha}\)
rút gọn biểu thức \(\frac{sin^2x}{1+cotx}+\frac{cos^2x}{1+tgx}-1\)