rút gọn các biểu thức sau
c,\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\) d,\(5\sqrt{16a}-4\sqrt{25a}-2\sqrt{100a}+\sqrt{169a}\) với a ≥ 0
e,\(5\sqrt{4a}-4\sqrt{a^2}-\sqrt{100a}\) với a ≥ 0 f,\(3\sqrt{4a^6}-5^3\) với a ≤ 0
1, tính a/ (3+√5)(√10 - √2)√(3-√5)
b/[√2-√(3-√5)].√2
c/(√10 + √6).√(8-2√15)
2, tìm x biết a/ √(x+5)=1+√x
b/√x + √(x-1)=1
c/ √(3-x) + √(x-5)=10
3, phân tích đa thức thành nhân tử:
a/ ab+b√a+√a+1 với a ≥0
b/ x-2√xy + y với x,y ≥ 0
c/√xy + 2√x - 3√y -6 với x,y ≥ 0
4, chứng minh rằng a/ (4+√15).(√10-√6).√(4-√15)=2
b/ √a + √b > √(a+b) (a,b>0)
5, Cho √(8-a) + √(5+a) = 5 tính √[(8-a).(5+a)]
6, rút gọn √(7+2√10)-√15
P/s : mn giúp e với nha
Rút gọn biểu thức
A= [ {( a+√a-6)/a-2} - {(a-4)/a+4√a+4} ] : √5a/ ( 6√5 + √45a)
(√5a và √45a là căn 5a; căn 45a không phải căn 5*a hay căn 4*5*a nha)
Bài 1: Cho biểu thức P = √x √x x-4 √x−2+√x+2) 2√x (với x > 0 và x ≠ 4) a) Rút gọn biểu thức P b) Tìm x để P = 3 Cho biểu thức P = √x √x x-25 + √x-5 √x+5) 2√x (với x > 0 và x ≠ 25) a) Rút gọn biểu thức P b) Tìm x để P = 2
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
rút gọn biểu thức \(\sqrt{\dfrac{a^3}{a}}\) với a <0 ta đc kết quả là
Bài 7: Rút Gọn Các Biểu Thức Sau
a. 5\(\sqrt{25^2}\) - 25x Với X<O
B \(\sqrt{49a^2}\) + 3a Với a \(\ge\) 0
C \(\sqrt{16a^4}\) + 6a\(^2\) Với a Bất Kì
d 3\(\sqrt{9a^6}\) - 6a\(^3\) với a bất kì
e 3\(\sqrt{9a^6}\) - 6a\(^3\) Với a\(\ge\) 0
f \(\sqrt{16a^{10}}\) + 6a\(^5\) với a \(\le0\)
Rút gọn biểu thức 63 a 3 b 4 28 a b 6 với a > 0; b < 0 ta được kết quả:
A. 3 a 2 b
B. 9 a 2 4 b 2
C. - 3 a 2 b
D. - 9 a 2 4 b 2
Rút gọn biểu thức 54 a 3 b 6 a b với a>0; b> 0; ta được kết quả:
A. 9a
B.9 a 2
C.-3a
D. 3a
Rút gọn biểu thức
a) A=\(3\sqrt{4x^6}-3x^3\) với x < hoặc = 0
b)B=\(\left(a-3\right)b^3\sqrt{\dfrac{25}{\left(a-3\right)^2b^4}}\)
Tập hợp nghiệm PT
\(\sqrt{2x-5}=3\)