Rút gọn :\(\frac{a^3+b^3-c^3+3abc}{\left(a-b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}\)
Rút gọn phân thức sau:
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Rút gọn biểu thức
\(\frac{\text{a^3+b^3+c^3-3abc}}{\text{a^2+b^2+c^2-ab-bc-ca}}\)
Rút gọn
D=\(\frac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}\)
Cho a+b+c=B. Rút gọn B=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3
rút gọn các phân thức sau :
a) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
b) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
a3 + b3 + c3 = 3abc
Rút gọn: (ab^2)/(a^2 +b^2 - c^2) + (bc^2)/(b^2 + c^2 - a^2) + (ca^2)/( c^2 + a^2 - b^2)
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
Rút gọn phân thức
a^+b^3+c^3-3abc/a^2+b^2+c^2-ab-ac-bc
Làm giùm mình với ạ mìh like cho