\(A=\left[1:\left(\dfrac{1+\sqrt{a}-\sqrt{a}}{\sqrt{a}+1}\right)\right]\cdot\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)
\(=\dfrac{\sqrt{a}+1}{1}\cdot\dfrac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\sqrt{a}+1}{1}\cdot\dfrac{\left(a+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}\)
\(=\dfrac{\left(a+1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-1}\)