TH1: \(\left(x-2\right)< 0\)
\(\Rightarrow A=\frac{-x\left(x-2\right)}{x^2+8x-20}=\frac{-x\left(x-2\right)}{x^2-2x+10x-20}=\frac{-x\left(x-2\right)}{\left(x^2-2x\right)+\left(10x-20\right)}\)
\(A=\frac{-x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{-x}{x+10}\)
TH2: \(\left(x-2\right)>0\)
\(\Rightarrow A=\frac{x\left(x-2\right)}{x^2+8x-20}=\frac{x\left(x-2\right)}{x^2-2x+10x-20}=\frac{x\left(x-2\right)}{\left(x^2-2x\right)+\left(10x-20\right)}\)
\(A=\frac{x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{x}{x+10}\)
HOK TOT