suy ra \(A^2\)=\(\sqrt{\frac{x^2-4x+4}{x-4+\frac{4}{x}}}\)
\(A^2\)=\(\sqrt{\frac{x^2-4x+4}{\left(\frac{x^2-4x+4}{x}\right)}}\)
\(A^2\)=\(\sqrt{x}\)
\(A\)=\(\sqrt[4]{x}\)
suy ra \(A^2\)=\(\sqrt{\frac{x^2-4x+4}{x-4+\frac{4}{x}}}\)
\(A^2\)=\(\sqrt{\frac{x^2-4x+4}{\left(\frac{x^2-4x+4}{x}\right)}}\)
\(A^2\)=\(\sqrt{x}\)
\(A\)=\(\sqrt[4]{x}\)
a) Tính giá trị biểu thức:
N=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
b)Rút gọn biểu thức:
A=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\),trị x>2
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
cho biểu thức: P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) rút gọn P
b) tính giá trị của x để P=-1
Giải giúp mình nha
1/ Thực hiện phép tính
a) \(\sqrt{9-2\sqrt{20}}+\sqrt{12-2\sqrt{35}}\)
b) \(\sqrt{5-\sqrt{21}}-\sqrt{5+\sqrt{21}}\)
2/Rút gọn biểu thức
a) \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{x^2-1}{x-3}\left(x< 3\right)\)
b) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\left(x>-2\right)\)
3/ Phân tích thành nhân tử
a) \(\sqrt{x}+\sqrt{y}-5\sqrt{xy}-5y\left(x,y\ge0\right)\)
b) \(x\sqrt{x}-y\sqrt{y}\left(x,y\ge0\right)\)
Câu 1: Cho biểu thức:\(D=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Rút gọn biểu thức b)Tìm x để D < 1 c) Tìm GT nguyên của x để D thuộc Z
Câu 2: Cho biểu thức: \(P=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a) Rút gọn P b) Tính GT của P biết \(x=\frac{2}{2+\sqrt{3}}\)
Câu 3: Cho biểu thức: \(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Tìm GT của x để A xác định b) Rút gọn A c) Tìm x sao cho A > 1
3.Rút gọn biểu thức :A=
\(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
RÚT GỌN A=\(\frac{\sqrt{x}+3}{6+5\sqrt{x}+6}:\left(\frac{8x}{4x\sqrt{x-8x}}-\frac{3\sqrt{x}}{3x-12}-\frac{1}{\sqrt{x}+2}\right)\)
Cho biểu thức :
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
a) Rút gọn .
b) Tìm x sao cho A < 2 .