cho a+b+c=0. Rut gon M= a^3+b^3+c(a^2+b^2)-abc
rut gon \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
rut gon
\(C=\left(a+b+c\right)^3+\left(a-b-c\right)^3+\left(b-c-a\right)^3+\left(c-a-b\right)^3\)
rut gon A=\(\frac{\left(a+b+c\right)^5-a^5-b^5-c^5}{\left(a+b+c\right)^3-a^3-b^3-c^3}\)iup minh voi di may ban
a^3 + b^3 + 3abc - c^3 / (a+b)^2 - c^2 rut gon phan thuc dai so
Rut gon phan thuc
\(M=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
rut gon bieu thuc
(a+b)\(^2\)+(b+c)\(^2\)+(c+a)\(^2\)-3(a+b)(b+c)(c+a)
(a+b+c)\(^3\)-(b+c-a)\(^3\)-(a+c-b)\(^3\)-(a+b-c)\(^3\)
rut gon bieu thuc
Rut gon bieu thuc:
a)(m+n)^2-(m-n)^2+(m+n)(m-n)
b)(a+b)^3+(a-b)^3-2a^3
c)(2x+1)^2+2(4x^2-1)+(2x-1)^2
d)(a+b+c)^2-2(a+b+c)(b+c)+(b+c)^2