\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Rút gọn : A = \(\frac{a}{b-a}+\left(\frac{2ab}{a^2-b^2}+\frac{a-b}{2a+2b}\right):\frac{a+b}{2a}\)
Cho biểu thức: A=\(\left(\frac{1}{2a+b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right)\times\)\(\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)
a) Rút gọn A
b) Tính giá trị A biết 4a2+b2= 5ab và a>b>0
Rút gọn biểu thức (a+b/b-2b/b-a).b-a/a2+b2+(a2+1/2a-1-a/2):a+2/1-2a
Rút gọn C=\(\dfrac{\text{ a^2b+b^2c+c^2a-ab^2-bc^2-ca^2}}{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}\)
Cho biểu thức:
A=\((\frac{1}{2a+b}-\)\(\frac{a^2-1}{2a^3-b+2a-a^2b})\): \((\frac{4a+2b}{a^3b+ab}-\frac{2}{a})\)
a,Rút gọn A
b, Tính giá trị của A biết 4a2+b2 = 5ab và a>b>0
Rút gọn: \(A=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}:\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)
Cho `a, b > 0` thoả mãn `a ≥ 2b`
Tìm GTNN của `P =` $\dfrac{2a^2 + b^2 - 2ab}{ab}$