a, \(\frac{a\left(b+1\right)-b-1}{b\left(a-1\right)+a-1}=\frac{a\left(b+1\right)-\left(b+1\right)}{b\left(a-1\right)+\left(a-1\right)}=\frac{\left(b+1\right)\left(a-1\right)}{\left(b+1\right)\left(a-1\right)}=1\)
b, \(\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}=\frac{2a\left(b+1\right)-\left(b+1\right)}{3b\left(2a-1\right)+3\left(2a-1\right)}=\frac{\left(b+1\right)\left(2a-1\right)}{\left(2a-1\right)\left(b+1\right)3}=\frac{1}{3}\)