a.
\(\dfrac{9^3}{\left(3^4-3^3\right)^2}\\ =\dfrac{3^6}{\left(3^3\left(3-1\right)\right)^2}\\ =\dfrac{3^6}{\left(3^3.2\right)^2}\\ =\dfrac{3^6}{3^6.2^4}=\dfrac{1}{2^4}\)
b.
\(\dfrac{\left(5^4-5^3\right)^2}{1255}\\ =\dfrac{\left(5^3\left(5-1\right)\right)^2}{5.251}\\ =\dfrac{\left(5^3.4\right)^2}{5.251}\\ =\dfrac{5^6.4^2}{5.251}\\ =\dfrac{5^5.4^2}{251}\)
c.
\(\dfrac{32^5.81^4}{16^5.27^5}\\ =\dfrac{2^{25}.3^{16}}{2^{20}.3^{15}}\\ =2^5.3=32.3=96\)
f.
\(\dfrac{16^4-8^5}{48}=\dfrac{2^{16}-2^{15}}{2^4.3}\\ =\dfrac{2^{15}.\left(2-1\right)}{2^4.3}\\ =\dfrac{2^{15}}{2^4.3}\\ =\dfrac{2^{11}}{3}\)