Đặt \(A=1+\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+....+\frac{1}{3}^{100}\)
\(\frac{1}{3}A=\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+.....+\frac{1}{3}^{101}\)
\(\frac{1}{3}A-A=\left(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+....+\frac{1}{3}^{101}\right)-\left(1+\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+....+\frac{1}{3}^{100}\right)\)
\(\frac{1}{3}A-A=\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+....+\frac{1}{3}^{101}-1-\frac{1}{3}-\frac{1}{3}^2-\frac{1}{3}^3-....-\frac{1}{3}^{100}\)
\(\frac{\left(-2\right)}{3}A=\frac{1}{3}-1\)
\(\frac{\left(-2\right)}{3}A=\frac{\left(-2\right)}{3}\Rightarrow A=1\)
Vậy ......