Chọn (D) hai cung chứa góc 120° (đối xứng nhau) dựng trên hai điểm A, B).
Chọn (D) hai cung chứa góc 120° (đối xứng nhau) dựng trên hai điểm A, B).
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. H là trực tâm của tam giác. Gọi M là một điểm trên cung BC không chứa điểm A( M không trùng với B và C). Gọi N và P lần lượt là điểm đối xứng của M qua các đường thẳng AB và AC. câu a: chúng minh N, H, P thẳng hàng. câu b: Khi góc BOC = 120 độ, xác định vị trí của điểm M sao cho 1/MB + 1/ MC đạt giá trị nhỏ nhất
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không trùng với A và B). Từ điểm C kẻ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB( D ∈ A B , E ∈ M A , F ∈ M B ) . Gọi I là giao điểm của AC và DE K là giao điểm của BC và DF. Chứng minh rằng
1) Tứ giácABCE nội tiếp một đường tròn.
2) Hai tam giác CDE & CFD đồng dạng.
3) Tia đối của tia CD là tia phân giác góc E C F ⏞
4) Đường thẳng IK song song với đường thẳng AB
Bài 1: Cho (O;R) và một điểm M. Hãy chỉ dùng thước thẳng dựng đường thẳng đi qua M và vuông góc với đường kính AB cho trước (đường kính AB không đi qua M).
Bài 2: Cho (O;R) và (O’;R’) cùng trực giao với đường tròn (C;r). Chứng minh trục đẳng phương của hai đường tròn (O;R) và (O’;R’) đi qua điểm C.
Bài 3: Cho A không thuộc (O;R). O’ di động trên (O;R), đường thằng a là trục đẳng phương của hai đường tròn (O;R) và (O’;O’A). Chứng minh khoảng cách từ A đến đường thẳng a là không đổi.
Bài 4: Cho góc xOy = 45 độ. A là một điểm thuộc miền trong của góc đó. Bằng thước và compa hãy dựng đường thẳng đi qua A cắt Ox, Oy lần lượt tại M, N sao cho A là trung điểm của MN.
Bài 5: Cho góc xAy, hai điểm B, C lần lượt thay đổi trên các tia Ax, Ay sao cho AB+AC=d không đổi. Từ A kẻ đường thẳng song song với BC, cắt đường tròn ngoại tiếp tam giác ABC tại M. Tìm quỹ tích điểm M.
Bài 6: Cho nửa (T) đường kính AB, hai nửa đường thẳng Ax, By nằm cùng một phía và tiếp xúc với (T). Lấy hai điểm di động M thuộc Ax, N thuộc By sao cho ABMN có diện tích S không đổi. Tìm quỹ tích hình chiếu trung điểm I của AB trên MN.
Bài 7: Cho ∆ABC, các điểm M, N lần lượt thuộc AB, AC sao cho MN // BC. Xác định trục đẳng phương của 2 đường tròn đường kính BN và CM.
Cho tam giác ABC nội tiếp đường tròn O. Giả sửcác tiếp tuyến với O tại B và C cắt nhau tại P nằm khác phía với A đối với BC trên cung BC không chứa lấy điểm A lấy điểm K sao cho K khác B và C. đường thẳng PK cắt đường tròn O lần thứ hai tại Q khác A.
chứng minh rằng các đường phân giác của các góc KBQ và KCQ đi qua cùng một điểm trên đường thẳng PQ
Giả sử đường thẳng AK đi qua trung điểm M của BC Chứng minh AQ song song với BC
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU
1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.
a) Chứng minh tam giác ACE vuông cân
b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?
c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng
Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:
a) Góc BED = góc DAE
b) DE2 = DA.DB
Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD
Câu 1: Cho đoạn thẳng AB=10cm. Điểm M nằm trên cung chứa góc 90 độ dựng trên đoạn AB sao cho M không trùng A và B. Khi đó, bán kính đường tròn đi qua 3 điểm M, A, R là R= ... cm.
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU