Cho hình vuông ABCD. Gọi E là một điểm thuộc cạnh BC( E khác BC). Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M.
a, Chứng minh: AI=AE
b, Chứng minh: AE.AK=AD.IK
c, Chứng minh: \(\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi khi E thay đổi trên cạnh BC
d, Chứng minh rằng: \(\dfrac{1}{AE}+\dfrac{1}{AK}=\dfrac{\sqrt{2}}{AM}\)
e, Tìm vị trí của E để độ dài đoạn thẳng IK ngắn nhất
Cho tam giác ABC vuông tại A.Gọi G là trọng tâm của tam giác. Một đường thẳng d qua G cắt các cạnh AB, AC lần lượt tại E và F
CMR: \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\ge\dfrac{9}{BC^2}\)
Giúp e với ạ cảm ơn nhiều !
Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và Tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông goác với DI. Đường thẳng này cắt đường thẳng BC tại M
a)tính số đo góc DMI
b)CM DI.DK=DC.KM
c)CM \(\dfrac{1}{DI^2}\)+\(\dfrac{1}{DK^2}\)có giá trị không đổi khi I di chuyển trên AB
Cho hình vuông ABCD. Qua điểm A vẽ một đường thẳng cắt cạnh BC tại E và cắt đường thẳng CD tại F.Chứng minh rằng :
\(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)
CẢM ƠN RẤT NHIỀU A!!
Cho hình vuông ABCD . Gọi E là một điểm thuộc cạnh BC ( E khác B ) Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M.
a) Chứng minh AI =AE
b) Chứng minh AE. AK=AD.IK
c) Chứng minh 1/ AE^2 + 1/ AK^2 không đổi khi E thay đổi trên BC
d Chứng minh 1/ AE +1/AK =căn 2/ AM
Cho hình vuông ABCD có cạnh bằng a. Gọi M là một điểm thuộc cạnh AB. Tia DM và tia CB cắt nhau ở N. Chứng minh rằng: \(\dfrac{1}{DM^2}+\dfrac{1}{DN^2}=\dfrac{1}{a^2}\).
Cho tam giác ABC vuông tại A có AB=9cm AC=12cm BC=15cm. Kẻ đường cao AH và trung tuyến AO. Tia phân giác trong và ngoài của góc BAC lần lượt cắt BC tại D, E. Chứng minh \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)
Cho tam giác ABC có AB=1, góc \(A=105^0\) , góc \(B=60^0\). Trên cạnh BC lấy điểm E sao cho BE=1. Vẽ ED//AB( D \(\in\) AC). Đường thẳng qua A vuông góc với AC cắt BC tại F. Gọi H là hình chiếu của A trên cạnh BC.
a) Chứng minh tam giác ABE đều. Tính AH.
b) Chứng minh: góc EAD=góc EAF=\(45^0\)
c) Tính các tỉ số lượng giác của góc AED và góc AEF.
d) Chứng minh △AED=△AEF. Từ đó suy ra AD=AF.
e) Chứng minh: \(\dfrac{1}{AD^2}+\dfrac{1}{AF^2}=\dfrac{4}{3}\)
Mọi người giúp em với!!!!!!!!!!!!!
Cho hình vuông ABCD,có độ dài cạnh bằng a.E là một điểm di chuyển trên CD(E\(\ne\)C,D).Đường thẳng AE cắt dường thẳng BC tại F,đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại K.
a,c/m:\(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
b,c/m:\(\cos\widehat{AKE}=\sin\widehat{EKF}\times\cos\widehat{EFK}+\sin\widehat{EFK}\)\(\times\cos\widehat{EKF}\)
c,Lấy điểm M là trung điểm đoạn AC.Trình bày cách dựng điểm N trên DM sao cho khoảng cách từ N đến AC bằng tổng khoảng cách từ N đến DC và AD
VẼ HÌNH GIÚP MÌNH NHA!
CẢM ƠN NHIỀU