Cho tam giác ABC có AB=1, góc \(A=105^0\) , góc \(B=60^0\). Trên cạnh BC lấy điểm E sao cho BE=1. Vẽ ED//AB( D \(\in\) AC). Đường thẳng qua A vuông góc với AC cắt BC tại F. Gọi H là hình chiếu của A trên cạnh BC.
a) Chứng minh tam giác ABE đều. Tính AH.
b) Chứng minh: góc EAD=góc EAF=\(45^0\)
c) Tính các tỉ số lượng giác của góc AED và góc AEF.
d) Chứng minh △AED=△AEF. Từ đó suy ra AD=AF.
e) Chứng minh: \(\dfrac{1}{AD^2}+\dfrac{1}{AF^2}=\dfrac{4}{3}\)
Mọi người giúp em với!!!!!!!!!!!!!
Mình cũng gặp bài này này, khó ở câu b với e
a: Xét ΔBAE có BA=BE
nên ΔBAE cân tại B
mà góc B=60 độ
nên ΔBAE đều
b: góc EAD=105-góc BAE=45 độ
góc EAF=90-45=45 độ
Do đó: góc EAD=góc EAF