Tìm \(x\in Z\) để \(A\in Z\) với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
Cho biểu thức:
\(P=\left(1+\dfrac{4}{\sqrt{x}-1}+\dfrac{1}{x-1}\right):\left(\dfrac{x+2\sqrt{x}}{x-1}\right)\) Với \(x>0;x\ne1\)
a, Rút gọn biểu thức.
b, Tìm \(x\in Z\) để P nhận giá trị nguyên.
Cho biểu thức \(P=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\left(\frac{1}{1-\sqrt{x}}-1\right)ĐKXĐ:x>0;x\ne1\)
a, Rút gọn P
b, Tìm x \(\in Z\) để \(P\in Z\)
c, Tìm x biết \(P=\sqrt{x}\)
Q = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)với đk x \(\ge0,x\ne9,x\ne4\)
1. rút gọn Q
2. tìm x để Q < 1
3. tìm x \(\in\)Z để Q\(\in\)Z
Cho biểu thức: \(P=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\left(\frac{1}{1-\sqrt{x}}-1\right)\) với \(x>0;x\ne1\) .
a,Rút gọn P.
b, Tìm \(x\in Z\) để \(P\in Z\) .
c, Tìm x biết \(P=\sqrt{x}\) .
A=\(\frac{x-5}{x+2\sqrt{x}-3}+\frac{1}{\sqrt{x}+3}+\frac{2}{\sqrt{x}-1}\) (x\(\ge0\), x \(\ne\)1)
a) Rút gọn A
b) Tìm x để A\(\le\)\(\frac{1}{2}\)
c) Tìm x \(\in z\)để A \(\in z\)
Cho M=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0;x\ne4;x\ne9\right)\)
a, Rút gọn M
b, Tính M khi x=\(11-6\sqrt{2}\)
c, Tìm x để M<1
d, Tìm \(x\in Z\) để M\(\in Z\)
Tìm x \(\in\)Z ĐỂ CÁC BIỂU THỨC SAU \(\in\)Z :
a) \(P=\frac{3}{\sqrt{x+1}}\left(x\ge0\right)\)
b) \(P=\frac{\sqrt{x-1}}{\sqrt{x+5}}\left(x\ge0\right)\)
c) \(P=\frac{2\sqrt{x}}{\sqrt{x+1}}\left(x\ge0\right)\)
HELP ME .................
Cho \(P=\frac{2x}{\sqrt{x}-2}\)
Với \(x\ge0;x\ne4\) tìm \(x\in Z\) để \(P\in Z\)