Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
shunnokeshi

P=\(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\)). \(\frac{x-1}{2x+\sqrt{x}-1}\)+\(\frac{\sqrt{x}}{2\sqrt{x}-1}\)

a) rút gọn P

b)tìm gtnn của P

Nguyễn Minh Đăng
21 tháng 9 2020 lúc 17:57

a) đk: \(x\ge0;x\ne\left\{\frac{1}{4};1\right\}\)

\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\left[\frac{\left(2x+\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{x-1}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{\left(x-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
21 tháng 9 2020 lúc 18:04

b) Ta có: 

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)-1}{x+\sqrt{x}+1}=1-\frac{1}{x+\sqrt{x}+1}\)

Mà \(x+\sqrt{x}\ge0\left(\forall x\right)\)

\(\Leftrightarrow x+\sqrt{x}+1\ge1\left(\forall x\right)\)

\(\Leftrightarrow\frac{1}{x+\sqrt{x}+1}\le1\left(\forall x\right)\)

\(\Leftrightarrow P=1-\frac{1}{x+\sqrt{x}+1}\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x+\sqrt{x}=0\Leftrightarrow x=0\)

Vậy Min(P) = 0 khi x = 0

Khách vãng lai đã xóa

Các câu hỏi tương tự
Long Le
Xem chi tiết
Lê Khánh Nhi
Xem chi tiết
LuKenz
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Love
Xem chi tiết
Jenny Avery
Xem chi tiết
ARMY MINH NGỌC
Xem chi tiết
Nguyễn Trí Duy
Xem chi tiết
Huỳnh Trần Thảo Nguyên
Xem chi tiết