Phương trình tổng quát của đường thẳng ∆ đi qua điểm M(1;3) và có vectơ pháp truyến n → 5 ; - 2 là: 5(x -1) – 2 (y – 3) = 0 hay 5x – 2y + 1 = 0
Đáp án B
Phương trình tổng quát của đường thẳng ∆ đi qua điểm M(1;3) và có vectơ pháp truyến n → 5 ; - 2 là: 5(x -1) – 2 (y – 3) = 0 hay 5x – 2y + 1 = 0
Đáp án B
Đường tròn có tâm nằm trên đường thẳng ∆1: x+y-3=0, đi qua điểm A(-1; 3) và tiếp xúc với đường thẳng ∆2: x-y+5=0 có phương trình là:
A. x 2 + y 2 - 4 x - 2 y - 8 = 0
B. x 2 + y 2 + x - 7 y + 12 = 0
C. x 2 + y 2 + 2 x + 2 y - 1 = 0
D. x 2 + y 2 2 x - 2 y + 9 = 0
Phần 1: Đại số
Câu 1 (2đ): Xét dấu các biểu thức sau:
a.
f x x 3 4
; c.
2
f x x x x 1 2 5 2 .
b.
2
f x x x 9 6 1
; d.
2
2 5
2
x
f x
x x
.
Câu 2 (4đ): Giải các bất phương trình sau:
a.
2
3 4 4 0 x x
; c.
2
1 2 5
0
3
x x
x
.
b.
2
2 4 4 0 x x x
; d.
2
2
5 2 3
0
2
x x
x x
.
Câu 3 (1đ): Xác định miền nghiệm của bất phương trình sau:
2 3 1 0. x y
Phần 2: Hình học
Câu 1 (2đ): Cho tam giác ABC biết
A B và C 1; 4 , 3; 1 6; 2 .
a) Lập phương trình tham số đường thẳng chứa cạnh BC của tam giác.
b) Lập phương trình tổng quát đường cao hạ từ A của tam giác ABC.
c) Lập phương trình tổng quát đường thẳng đi qua B và song song với đường thẳng
d x y : 3 1 0.
Câu 2 (1đ): Xét vị trí tương đối và tìm giao điểm (nếu có) của 2 đường thẳng sau:
1
d : 2 3 0 x y
và
2
d : 2 3 0.
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.
Câu 1. Cho tam giác ABC với A(1; 2), B(−2; 5) và C(0; 1). Gọi H, K lần lượt là chân đường cao kẻ từ
các đỉnh A, B. Hãy chỉ ra một véc-tơ pháp tuyến của mỗi đường thằng AH, BK.
Câu 2. Cho hai đường thẳng d1 : −3x + y − 2 = 0 và d2 : 2x − 3 = 0.
a) Hãy chỉ ra một VTPT của d1, d2.
b) Trong các điểm A(2; 0), B(−1; −1), C(\(\frac{3}{2}\); 1), D(\(\frac{3}{2}\); \(\frac{13}{2}\)) điểm nào thuộc d1, điểm nào thuộc d2?
Câu 3. Viết phương trình tổng quát của đường thẳng d biết
a) d đi qua điểm A(−2; 5) và có VTPT −→n = (−1; 2).
b) d đi qua điểm A(−5; 2) và vuông góc với đường thẳng BC biết tọa độ điểm B(1; 1) và
C(2; 3).
c) d đi qua điểm A(−1; 1) và song song với đường thẳng d': −4x − y + 2 = 0.
Lập phương trình thanh số, phương trình tổng quát của đường thẳng Δ biết: d. Δ đi qua D(2; 5) và E(3; 1)
e. Δ đi qua G(2; 5) và song song với đường thẳng d: 2x-3y-3 = 0
g. Δ đi qua H(2; 5) và vuông góc với đường thẳng d: x + 3y + 2 = 0
Bài tập 6. Trong mặt phẳng Oxy, cho hai đường thẳng Delta_{1} / 2 * x - y - 2 = 0 , Delta_{2} / x - y + 3 = 0 và hai điểm A(-1;3) , B(0;2) . a. Viết phương trình đường thẳng qua AB. b. Viết phương trình đường thẳng trung trực của đoạn thẳng AB . c. Viết phương trình đường thẳng qua 4 và song song với Delta_{1} . d. Viết phương trình đường thẳng qua 4 và vuông góc với Delta_{1} e. Viết phương trình đường thẳng qua B và có hệ số góc k = - 3 . f. Tính côsin góc giữa hai đường thẳng Delta_{1}, Delta_{2} g. Tính d(A, Delta_{2}) . h. Viết phương trình đường thẳng qua 4 và tạo với Delta_{1} một góc c biết cos varphi = 1/(sqrt(5)) i. Tìm tọa độ hình chiếu vuông góc của 4 trên Delta_{2} j. Tìm tọa độ điểm B^ prime d hat oi xứng với B qua Delta_{2}
1. trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua điểm M (2;3) và có véc tơ pháp tuyến n = (2;7) là
2. cho tam giác ABC có AB = 2, ac = 3, BAC = 120 độ. Độ dài cạnh BC bằng?
3. Tập nghiệm của bất phương trình -2x2 + 3x +2 lớn hơn hoặc bằng 0 là?
4. Tìm trên đường tròn có bán kính R = 3, độ dài cung có số đo 30 độ là bao nhiêu?
5. Viết phương trình tổng quát của đường thẳng đi qua điểm M (3; 0) và song song với đường thẳng 2x + y +
2020 = 0
Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:
a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.
b) Đi qua hai điểm M(1;-1) và N(3;2).
c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.
Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).
Tính khoảng cách từ điểm C đến đường thẳng AB.
Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát phöông trình toång quaùt cuûa:
a) 3 caïnh AB, AC, BC
b) Ñöôøng thaúng qua A vaø song song vôùi BC
c)Trung tuyeán AM vaø ñöôøng cao AH cuûa tam giaùc ABC
d) Ñöôøng thaúng qua troïng taâm G cuûa tam giaùc ABC vaø vuoâng goùc vôùi AC
e) Ñöôøng trung tröïc cuûa caïnh BC
Bài 4. Cho tam giaùc ABC coù: A(1 ; 3), B(5 ; 6), C(7 ; 0).:
a) Vieát phöông trình toång quaùt cuûa 3 caïnh AB, AC, BC
b) Viết phương trình đđöôøng trung bình song song cạnh AB
c) Viết phương trình đường thẳng qua A và cắt hai trục tọa độ tại M,N sao cho AM = AN
d) Tìm tọa độ điểm A’ là chân đường cao kẻ từ A trong tam giaùc ABC
Bài 5. Viết phương trình đường tròn có tâm I(1; -2) và
a) đi qua điểm A(3;5).
b) tiếp xúc với đường thẳng có pt x + y = 1.