Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d.
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Giá trị của tham số m để phương trình 4 x - m . 2 ( x + 1 ) + 2 m = 0 có 2 nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 3 là
A. m = 2
B. m = 3
C. m = 1
D. m = 4
Xác định giá trị của tham số m để phương trình
1 3 x 3 - 1 2 mx 2 - 5 = 0
có nghiệm duy nhất
A. m < - 30 3 B. 0 < m < 1
C. m < 0 D. m > - 30 3
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Với tất cả giá trị nào của tham số m thì phương trình ( m - 10 ) x 2 - 2 ( m - 2 ) x + m - 3 = 0 có hai nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 + x 1 . x 2 < 1
A. 1<m<3.
B. 1<m<2.
C. m>2.
D. m>3.
Cho hàm số y=f(x) thỏa mãn f ( 0 ) < 7 6 và có bảng biến thiên như sau:
Giá trị lớn nhất của tham số m để phương trình e 2 f 3 ( x ) - 13 2 f 2 ( x ) + 7 f ( x ) - 1 2 = m có nghiệm trên đoạn [0;2] là:
A. e 2
B. e 15 13
C. e 4
D. e 3
Xác định giá trị của tham số m để phương trình 2 x 3 + 3m x 2 - 5 = 0 có nghiệm duy nhất.
A. m = 5 3 B. m < 5 3
C. m > 5 3 D. m ∈ R
Cho phương trình m - 1 log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 ( x - 2 ) + 4 m - 4 = 0 (với m là tham số). Gọi S = a ; b là tập hợp các giá trị của m để phương trình có nghiệm trên đoạn 5 2 ; 4 . Tính a + b .
A. 7 3 .
B. - 2 3 .
C. - 3 .
D. 1034 237 .