Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Phần tự luận

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:

a) Tứ giác CEHD nội tiếp

Cao Minh Tâm
19 tháng 7 2017 lúc 9:24

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác CEHD có:

∠(CED) = 90 0  (do BE là đường cao)

∠(HDC) =  90 0  (do AD là đường cao)

⇒ ∠(CED) + ∠(HDC) = 180 0

Mà ∠(CED) và ∠(HDC) là 2 góc đối của tứ giác CEHD nên CEHD là tứ giác nội tiếp


Các câu hỏi tương tự
Trần Nhật Quỳnh
Xem chi tiết
Xem chi tiết
Trần Gia Minh
Xem chi tiết
Sakamaki Lucy
Xem chi tiết
hông cần biết
Xem chi tiết
Ke Lan Phan
Xem chi tiết
Cố Tử Thần
Xem chi tiết
Mo0n AnH ThỦy o0o
Xem chi tiết
hồng ngân
Xem chi tiết