xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Ta co :
Đặt tổng trên là A
A= xy(x+y)+yz(y+z)+xz(x+z)+2xyz
A= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
A= xy(x + y) + yz(y + z + x) + xz(x + z + y)
A= xy(x + y) + z(x + y + z)(y + x)
A= (x + y)(xy + zx + zy + z2 )
A= (x + y)[x(y + z) + z(y + z)]
A= (x + y)(y + z)(z + x)