\(c^2+bc-a^2-ab=\left(c^2-a^2\right)+\left(bc-ab\right)=\left(a+c\right)\left(c-a\right)+b\left(c-a\right)=\left(a+b+c\right)\left(c-a\right)\) \(x^3-3x^2+9x-27=\left(x^3-3x^2\right)+\left(9x-27\right)=x^2\left(x-3\right)+9\left(x-3\right)=\left(x^2+9\right)\left(x-3\right)\)\(\left(x^2+x\right)^2+4x^2+4x+4=\left(x^2+x\right)^2+4\left(x^2+x\right)+4=\left(x^2+x+2\right)^2\)
\(x^3-2x^2-x+2=\left(x^3-2x^2\right)-\left(x-2\right)=x^2\left(x-2\right)-\left(x-2\right)=\left(x^2-1\right)\left(x-2\right)=\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
a, \(c^2+bc-a^2-ab\)
=>\(\left(c^2-a^2\right)+\left(bc-ab\right)\)
=>\(\left(c+a\right)\left(c-a\right)\) +b(c-a)
=>(c-a)(a+b+c)
b,\(x^3-2x^2-x+2\)
=>(\(x^3-2x^2\))-(x-2)
=>\(x^2\)(x-2)-(x-2)
=>(x-2)(\(x^2\)-1)