Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trịnh Hoàng Đông Giang

phân tích sau thành nhân tử:  x^3+y^3+z^3-3xyz

Alexandra Alice
13 tháng 12 2016 lúc 23:02

Ta có: 
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 
~~~~~~~~ 
Bài làm trên mình đã sử dụng hằng đẳng thức đáng nhớ sau: 
(a+b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a-b) 
=> a³ + b³ = (a+b)³ - 3ab(a-b). 
Chúc bạn học giỏi!

Alexandra Alice
13 tháng 12 2016 lúc 23:02

x³ + y³ + z³ - 3xyz = (x + y)³ - 3xy(x + y) + z³ - 3xyz 
= (x + y)³ + z³ - 3xy(x + y + z) 
= (x + y + z)³ - 3(x + y + z)(x + y)z - 3xy(x + y + z) 
= (x + y + z)³ - 3(x + y + z)(xy + yz + zx) 
= (x + y + z)[(x + y + z)² - 3xy - 3yz - 3zx)] 
= (x + y + z)(x² + y² + z² - xy - yz - zx)

Alexandra Alice
13 tháng 12 2016 lúc 23:03

k nha!

Đường Quỳnh Giang
5 tháng 9 2018 lúc 23:05

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

๖ACE✪Hoàngミ★Việtツ
10 tháng 9 2018 lúc 17:25

Ta có :

\(x^3+y^3+z^3-3xyz\)

\(\Rightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(\Rightarrow\left(x+y+z\right)\left[\left(x+y^2\right)-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

P/s tham khảo nha

hok tốt


Các câu hỏi tương tự
Văn Ngọc Hiển
Xem chi tiết
Emmaly
Xem chi tiết
^($_DUY_$)^
Xem chi tiết
Võ Hồng Nhung
Xem chi tiết
Nguyen Hong Anh
Xem chi tiết
Nguyễn Dương Tuấn Kiệt
Xem chi tiết
Nguyễn Ngọc Thanh Thảo
Xem chi tiết
Phạm Nguyễn Trâm Anh
Xem chi tiết
Trịnh Thu Thảo
Xem chi tiết