1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)
Ta đặt: \(x^2+8x+7=n\)
\(=n.\left(n+8\right)+15\)
\(=n^2+8n+15\)
\(=n^2+3n+5n+15\)
\(=\left(n^2+3n\right)+\left(5n+15\right)\)
\(=n.\left(n+3\right)+5.\left(n+3\right)\)
\(=\left(n+3\right).\left(n+5\right)\)
\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)
\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)
2) \(x^2-2xy+3x-3y-10+y^2\)
\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)
Ta đặt: \(x-y=n\)
\(=n^2+3n-10\)
\(=n^2-2n+5n-10\)
\(=\left(n^2-2n\right)+\left(5n-10\right)\)
\(=n.\left(n-2\right)+5.\left(n-2\right)\)
\(=\left(n-2\right).\left(n+5\right)\)
\(=\left(x-y-2\right).\left(x-y+5\right)\)