x^2 - 10x - 16
= x^2 - 2.x.5 + 25 - 25 - 1 6
= ( x - 5)^2 - 41
=( x - 5 )^2 - \(\left(\sqrt{41}\right)^2\)
= ( x - 5 - căn 41 ) ( x - 5 + căn 41)
thang Tran làm thế hơi rảnh
của mjk
x2-10x-16
=x2-2x-8x-16
=x(x-2)-8(x-2)
=(x-2)(x-8)
x^2 - 10x - 16
= x^2 - 2.x.5 + 25 - 25 - 1 6
= ( x - 5)^2 - 41
=( x - 5 )^2 - \(\left(\sqrt{41}\right)^2\)
= ( x - 5 - căn 41 ) ( x - 5 + căn 41)
thang Tran làm thế hơi rảnh
của mjk
x2-10x-16
=x2-2x-8x-16
=x(x-2)-8(x-2)
=(x-2)(x-8)
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
3x2 + 8x + 2
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
2x2 - 5x + 3
\(\text{x^2 – 16 - y^2 + 8y}\)
Phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử x^16 + x^14 +1
Chứng tỏ rằng nếu phương trình a x 2 + b x + c = 0 có nghiệm là x 1 v à x 2 thì tam thức a x 2 + b x + c phân tích được thành nhân tử như sau:
a x 2 + b x + c = a ( x - x 1 ) ( x - x 2 )
Áp dụng : phân tích đa thức thành nhân tử.
a ) 2 x 2 - 5 x + 3 ; b ) 3 x 2 + 8 x + 2
Tìm hai nghiệm của phương trình 5 x 2 + 21x − 26 = 0 sau đó phân tích đa thức B = 5 x 2 + 21x − 26 = 0 sau thành nhân tử.
A. x 1 = 1 ; x 2 = 26 5 ; B = ( x − 1 ) x + 26 5
B. x 1 = 1 ; x 2 = - 26 5 ; B = 5 ( x + 1 ) x + 26 5
C. x 1 = 1 ; x 2 = - 26 5 ; B = 5 ( x - 1 ) x + 26 5
D. x 1 = 1 ; x 2 = 26 5 ; B = 5 ( x - 1 ) x + 26 5
Tìm hai nghiệm của phương trình 18 x 2 + 23x + 5 = 0 sau đó phân tích đa thức A = 18 x 2 + 23x + 5 = 0 sau thành nhân tử.
A. x 1 = − 1 ; x 2 = − 5 18 ; A = 18 ( x + 1 ) x + 5 18
B. x 1 = − 1 ; x 2 = − 5 18 ; A = ( x + 1 ) x + 5 18
C. x 1 = − 1 ; x 2 = 5 18 ; A = 18 ( x + 1 ) x + 5 18
D. x 1 = 1 ; x 2 = - 5 18 ; A = 18 ( x + 1 ) x + 5 18
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
Phân tích thành nhân tử các đa thức sau:
\(x^2-16+2\left(x+4\right)\)