\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x.\left(4x+2\right)\)
\(=8x^2+4x\).
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)=4x\left(2x+1\right)\)
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=4\left(x^2+x\right)\).
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
\(=4\left(2x^2+x\right)\)
(3x + 1)2 - (x + 1)2
<=> = (3x2 + 2.3x + 1) - (x2 + 2.2x + 1)
<=> = 3x2 + 6x + 1 - x2 - 4x -1
<=> = 3x2 - x2 + 6x - 4x + 1 -1
<=> = 2x2 + 2x
<=> = 2x.(x + 1)
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left[\left(3x+1\right)-\left(x+1\right)\right]\left[\left(3x+1\right)+\left(x+1\right)\right]\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)=8x^2+4x\)