Thế này có đúng ko nhỉ \(a+b=\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3\) sau đó dùng hằng đẳng thức x3 + y3
Thế này có đúng ko nhỉ \(a+b=\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3\) sau đó dùng hằng đẳng thức x3 + y3
phân tích đa thức thành nhân tử
a, ab+ b√a+ √a +1 ( với a ≥0)
b, 4a+1 (với a<0)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
Phân tích các đa thức sau thành nhân tử với a<0:
a. a+3
b. 4a+1
c. 2a+3
Chứng tỏ rằng nếu phương trình a x 2 + b x + c = 0 có nghiệm là x 1 v à x 2 thì tam thức a x 2 + b x + c phân tích được thành nhân tử như sau:
a x 2 + b x + c = a ( x - x 1 ) ( x - x 2 )
Áp dụng : phân tích đa thức thành nhân tử.
a ) 2 x 2 - 5 x + 3 ; b ) 3 x 2 + 8 x + 2
-Giúp mình giải toán với!
+PHÂN TÍCH CÁC ĐA THỨC SAU THÀNH NHÂN TỬ.
A) 4+2c với c<0
B) a+b+2 căn ab với a>hoặc =0, b> hoặc =0
C) a+b-2 căn ab với a> hoặc =0, b>hoặc=0
Phân tích thành nhân tử biểu thức :
ab+\(b\sqrt{a}+\sqrt{a}+1\) với a≥0
Biểu thức \(a\sqrt{b}+\sqrt{ab}+\sqrt{a}+1\)(a≥0, b≥0) được phân tích thành nhân tử là
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
3x2 + 8x + 2
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
2x2 - 5x + 3