Phân tích đa thức thành nhân tử :
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
phân tích đa thức thành nhân tử
a, \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
b, \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
c, \(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
65. Phân tích đa thức thành nhân tử
a) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
b) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\)
c) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
d) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
e) \(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
Phân tích đa thức sau thành nhân tử:
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
c) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
d) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
e) \(a.\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c^2\left(a+b\right)^2.\left(a-b\right)\)
Phân tích đa thức thành nhân tử:
\(a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)\)
Phân tích đa thức thành nhân tử
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
1) Phân tích đa thức thành nhân tử:
\(\left(x+y\right)^3-x^3-y^3\)
2) Chứng minh rằng nếu:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) thì a=b=c
Phân tích đa thức thành nhân tử :
\(a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)\)
64. Phân tích đa thức thành nhân tử
a)\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+bc\right)\)
b) \(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
c) \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)