Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minecraftboy01

Phan tich da thuc thanh nhan tu : \(2x^2-6x+1\)

Nguyễn Việt Lâm
7 tháng 3 2019 lúc 22:06

Bài này ko thể phân tích theo kiểu lớp 8 được (chưa học căn thức)

\(2x^2-6x+1=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{3\sqrt{2}}{2}+\left(\frac{3\sqrt{2}}{2}\right)^2-\frac{7}{2}\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{14}}{2}\right)^2\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}+\frac{\sqrt{14}}{2}\right)\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}-\frac{\sqrt{14}}{2}\right)\)

\(=\left(\sqrt{2}x+\frac{\sqrt{14}-3\sqrt{2}}{2}\right)\left(\sqrt{2}x-\frac{\sqrt{14}+3\sqrt{2}}{2}\right)\)

Khôi Bùi
7 tháng 3 2019 lúc 22:47

\(2x^2-6x+1=2\left(x^2-3x+\frac{9}{4}-\frac{7}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{7}}{2}\right)^2\right]=2\left(x-\frac{3}{2}-\frac{\sqrt{7}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{7}}{2}\right)\)

\(=2\left(x-\frac{3+\sqrt{7}}{2}\right)\left(x-\frac{3-\sqrt{7}}{2}\right)\)


Các câu hỏi tương tự
Minecraftboy01
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Đinh Quốc Anh
Xem chi tiết
Đinh Quốc Anh
Xem chi tiết
Hoang Nguyen
Xem chi tiết
₮ØⱤ₴₮
Xem chi tiết
Ngọc Tuyền
Xem chi tiết